• Lecture Series in Algebraic Geometry 

    August 26 – September 27, 2019

    Morningside Center of Mathematics, Room 110

     

    Invited speakers: 

    Junyan Cao (Paris)

    Yalong Cao (Tokyo)

    Meng Chen (Shanghai)

    Ya  Deng (Sweden)

    Stephane Druel (Lyon)

    Katsuhisa Furukawa (Tokyo)

    Zhizhong Huang (Hannover)

    Jun-Muk Hwang (Seoul)

    Yunfeng Jiang (Kansas)

    Conan Leung (Hong Kong)

    Zhiyuan Li (Shanghai)

    Yuchen Liu (Yale)

    Laurent Manivel (Toulouse)

    Yoshinori Namikawa (Kyoto)

    Keiji Oguiso (Tokyo)

    Thomas Peternell (Bayreuth)

    Zhiyu Tian (Beijing)

    Yukinobu Toda (Tokyo)

    Claire Voisin (Paris)

    Junyi Xie (Rennes)

    Ying Xie (HongKong)

    Qizheng Yin (Beijing)

    Shilin Yu (Xiamen)

    Fyodor Zak (Mosow)

     

    Organizers: 

    Baohua Fu

    Yujiro Kawamata

    Shigeru Mukai

     

    Schedule: 

     

    Lecture Series by Yuchen Liu (Yale University): Valuation approaches to K-stability  

    South Building, Room 224

    Thursday 22/08:  10:30—11:30  &  13:30—14:30

    Friday 23/08:    13:30—14:30

     

    First week:   26th -30th August

     

     

    Monday

    Tuesday

    Wednesday(S202)

    Thursday

    9:30—10:30

     Voisin (I)

    Cao(II)

    9:45-10:45 Huang

    11:00-12:00 Illusie

    Peternell (II)

    10:45—11:45

     Cao (I)

    Voisin (II)

    Deng(II)

                               Lunch

    1:30—2:30

     Deng (I)

     Reid(II)

     

    Free

    Peternell(III)

    2:45—3:45

     Reid (I)

     Cao(III)

    Huang(II)

    4:00—5:00

     Peternell (I)

     Voisin(III)

    Deng(III)

     

    Lectures Series by Miles Reid

     

    The Tate-Oort group TO_p

     

    Over an algebraically closed field of characteristic p, there are 3 group schemes of order p, namely the ordinary cyclic group Z/p, the multiplicative group mu_p in Gm and the additive group al_p in Ga. The Tate--Oort group scheme TO_p of [John Tate and Frans Oort, Group schemes of prime order, Ann. Sci. Ecole Norm. Sup. Vol 3 (1970)] puts these into one happy family, together with the cyclic group of order p in characteristic zero. This paper studies a simplified form of TO_p, focusing on its representation theory and basic applications in geometry. A final section describes more substantial applications to varieties having p-torsion in Pic^tau, notably the 5-torsion Godeaux surfaces and Calabi--Yau 3-folds obtained from TO_5-invariant quintics.

     

     

    Second week:  2nd -6th September

     

     

    Monday

    Tuesday

    Thursday

    9:30—10:30

    Leung/Xie(I)

    Li(II)

    Manivel (II)

    10:45—11:45

    J. Xie(I)

    Manivel (I)

    Namikawa(III)

                             Lunch

    1:30—2:30

    Li(I)

    Namikawa(II)

    J. Xie(III)

    2:45—3:45

    Namikawa(I)

    J. Xie(II)

    Li(III)

    4:00—5:00

    Yu

    Leung/Xie(II)

    Manivel (III)

     

    Third week:  16th -20th September 

     

     

    Monday

    Tuesday

    Thursday

    Friday

    9:30—10:30

    Druel (I)

    Zak(I)

    Yin(II)

    Tian(II)

    10:45—11:45

    Hwang(I)

    Druel(II)

    Zak(II)

    Yin(III)

                                    Lunch

    1:30—2:30

    Oguiso(I)

    Hwang(II)

    Druel(III)

     

    2:45—3:45

    Yin(I)

    Oguiso(II)

    Hwang(III)

     

    4:00—5:00

    Furukawa

    Tian(I)

    Oguiso(III)

     

     

    Fourth week:  23th -27th September

     

    Monday

    Tuesday

    Thursday

    9:30—10:30

    Jiang(I)

    Jiang(II)

    Toda(III)

    10:45—11:45

    Cao(I)

    Toda(II)

    Cao(III)

                             Lunch

    1:30—2:30

    Toda(I)

    Cao(II)

    Jiang(III)

     

     

    Sponsors:

    Academy of Mathematics and System Sciences, CAS,

    Morningside Center of Mathematics,

    National Science Foundation of China


    Conference Handbook 

    Conference Handbook of Week 1.pdf

    Conference Handbook of Week 2.pdf

    Conference Handbook of Week 3.pdf

     

    Useful Information: 

    Transportation

    You can take the following 3 vehicles and then go to hotel or conference building by walk according to the local maps below.

    l Airport Shuttle

    Taking airport shuttle line 5 to Zhongguancun (中關村) Station (the last station) which costs about 30 Yuan. 

    http://en.bcia.com.cn/traffic/airbus/index.shtml

    l Subway

    Taking subway line 10 to Zhichunlu (知春路) or Zhichunli (知春里) Station which costs about 30 Yuan from airport or 5 Yuan from train station. 

    http://www.bjsubway.com/en/

    l Taxi

    Taking taxi to Baofusiqiao (保福寺橋) which costs about 100 Yuan from airport or 50 Yuan from train station. You can print the following message and show it to taxi driver.

     

    您好,請送我到遼寧大廈(保福寺橋)。

    Please take me to the Liaoning International Hotel.

     

    Hotel

    All speakers will stay in Liaoning International Hotel. http://www.liaoninginternationalhotel.com 

     

    Local Maps

     

    相關附件
    相關文檔
    广汉| 秦皇岛| 涿州| 德清| 蓬莱| 日土| 金昌| 浙江杭州| 启东| 张家界| 武安| 南通| 佳木斯| 沛县| 崇左| 周口| 顺德| 浙江杭州| 牡丹江| 廊坊| 襄阳| 连云港| 河南郑州| 天门| 防城港| 福建福州| 海北| 黔西南| 新沂| 汝州| 天长| 简阳| 资阳| 嘉兴| 湖南长沙| 巴音郭楞| 灵宝| 景德镇| 红河| 吉安| 凉山| 大连| 梧州| 清远| 洛阳| 红河| 乳山| 信阳| 孝感| 龙岩| 济南| 牡丹江| 忻州| 昌都| 莱州| 达州| 涿州| 朝阳| 启东| 蚌埠| 赵县| 神木| 鹰潭| 伊犁| 辽宁沈阳| 南阳| 巴中| 桐乡| 内蒙古呼和浩特| 图木舒克| 淮北| 汕尾| 河源| 漯河| 曹县| 延安| 三亚| 赣州| 鄂尔多斯| 泗洪| 武威| 海门| 乐清| 莱芜| 任丘| 漯河| 眉山| 青州| 郴州| 溧阳| 张家界| 台州| 绵阳| 五指山| 台湾台湾| 平顶山| 阿拉尔| 吴忠| 库尔勒| 昌吉| 烟台| 图木舒克| 白城| 莱州| 周口| 自贡| 仁怀| 明港| 南京| 黔南| 山南| 大理| 安徽合肥| 金昌| 呼伦贝尔| 万宁| 石狮| 厦门| 五家渠| 南安| 新疆乌鲁木齐| 黔南| 黄山| 聊城| 伊犁| 晋江| 吐鲁番| 曲靖| 嘉善| 湖北武汉| 克孜勒苏| 盐城| 沧州| 营口| 丹东| 酒泉| 乌海| 图木舒克| 阿勒泰| 商丘| 湖南长沙| 佳木斯| 泰安| 昌吉| 清徐| 河源| 阿拉尔| 三明| 琼中| 乌海| 防城港| 乐平| 伊春| 姜堰| 保定| 韶关| 海门| 信阳| 白城| 吐鲁番| 德清| 绍兴| 大连| 岳阳| 铜川| 钦州| 呼伦贝尔| 玉溪| 七台河| 辽源| 巴彦淖尔市| 通辽| 遵义| 兴安盟| 诸城| 石狮| 宁国| 松原| 陇南| 绵阳| 四平| 伊春| 神农架| 乐山| 昌吉| 六盘水| 高密| 台北| 龙岩| 日喀则| 咸宁| 广安| 临汾| 昭通| 天长| 铜仁| 公主岭| 抚顺| 白山| 三河| 诸城| 迪庆| 玉溪| 乌兰察布| 安庆| 哈密| 朝阳| 保山| 阿坝| 沧州| 黔西南| 象山| 海拉尔| 镇江| 周口| 河北石家庄| 任丘| 娄底| 九江| 项城| 汉川| 神木| 青海西宁| 唐山| 龙岩| 吉林长春| 台湾台湾| 江苏苏州| 巢湖| 佳木斯| 商洛| 三沙| 白山| 济宁| 永康| 南京| 吐鲁番| 厦门| 池州| 苍南| 潜江| 保亭| 鄢陵| 金坛| 肥城| 龙口| 基隆| 开封| 娄底| 盐城| 昌吉| 丹东| 塔城| 南阳| 文昌| 张家口| 鄂州| 宁德| 承德| 秦皇岛| 贵州贵阳| 清远| 娄底| 东莞| 西双版纳| 慈溪| 信阳| 宿迁| 临沧| 平潭| 大理| 通化| 如东| 乌兰察布| 吉林| 阳江| 海宁| 无锡| 永州| 厦门| 南平| 肇庆| 广元| 咸阳| 招远| 桐乡| 抚顺| 广安| 三明| 台湾台湾| 姜堰| 咸宁| 涿州| 和田| 宿州| 大连| 燕郊| 牡丹江| 丹阳| 林芝|